Prime Number Theorem

The Prime Number Theorem states that
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as x — oo. Here 7 (z) = > _ 1, the number of primes less than or equal to
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x, and 7 (x) ~ z/log x means that
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We can plot 7 (z) against x/logz :
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The plot for 7 (z) is in blue, that for 2/logz in red.

Note that 7 (z) is a step function (and thus not continuous) while =/ log x
is continuous so there will always be an error between the two. We have
discussed in the notes that there is a better approximation to 7 (x) given by
the logarithmic integral
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We can plot this function against both 7 (z) and x/logx :
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The plot for liz is in yellow.
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But even liz isn’t as good an approximation as can be found. If we look
in the range 100,000,000 to 100,100,000 we find a sizeable difference between

T (I) and liz. (lix is now in red).
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A better approximation was given by Riemann as

R(z)=Y " )i (1)
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If we plot R (z) along with 7 (x) and li () in 100,000,000 to 100,100,000
we find
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If we zoom in to 100,000,000 to 100,001,000 we find
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From all these pictures you might guess that 7 () > z/logx and 7 (z) <
lixz for all 2. Both of these statements are false, from which you should learn
the lesson that you can’t tell what will happen as x — oo from behaviour
for finite = (even if x is as large as 100,100,000!)



Above we have talked of the errors between 7 (z) and x/logz and liz so
it makes sense to look at the differences 7 () — x/logz and 7 (x) — lix :
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It is 7 () — x/log = that has the largest error. In fact this error is com-
parable with z/log? z :
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It is expected that the error 7(x) — liz grows no faster than Cx'/?logx
for some constant C'



